Символ ОСТ

оформление - PDA | Полная версия сайта

Орден Современной Технократии

Главная » Статьи » Технологии, сделай сам. » сделай сам

Характеристики светодиодов для освещения.
Если бы кто-нибудь предполагал, что светодиоды займут такое доминирующее положение в световых технологиях… Только посмотрите вокруг — они фактически повсюду. От стандартных индикаторов в аудио-видео технике, портативных компьютерах и игрушках до светофоров, видеодисплеев и автомобильного света. Светодиодные технологии демонстрируют взрывной рост на протяжении последних лет, и дальнейшие перспективы светодиодов представляются весьма широкими.
Основной «движущей силой» такого роста является постоянно увеличивающийся уровень яркости светодиодов. Кроме того, на рынок приходят новые материалы и технологические процессы изготовления кристаллов. Счастливые для лентяев времена, когда разнообразие источников света ограничивалось «лампочкой Ильича», окончательно канули в лету. Одновременно с увеличением разновидностей как самих светодиодов, так и их возможных применений, повышаются и требования к уровню компетентности, необходимого проектировщикам и архитекторам для построения светодиодных систем освещения. И это не удивительно, ведь светодиодный свет из пассивного «статиста» превратился в эффективный инструмент изменения реальности. Современный рынок оптоэлектронных компонентов требует понимания не только оптических свойств светодиодов, но и методов их измерения.
Безусловно, наиболее типичные вопросы, которые задают среднестатистические потребители, связаны с оптическими свойствами светодиодов: насколько яркие ваши светодиоды? Что такое люмен? Как преобразовать канделы в люмены? Почему наши измерения не совпадают с вашими измерениями? Попробуем дать ответы на эти и другие подобные вопросы, разбив статью на пять отдельных, но взаимосвязанных тем:
— фотометрические (световые) характеристики;
— радиометрические (энергетические) характеристики;
— колориметрические (спектральные) характеристики;
— гониометрические (угловые) характеристики;
— эксплуатационные характеристики (срок службы);
По большому счёту, об этих характеристиках, стандартах и испытательных методологиях можно написать отдельную книгу. Но мы остановимся на наиболее общих моментах, представляющих для наших читателей наибольший интерес.

Фотометрические (световые) характеристики светодиодов

Фотометрия — это измерение света в видимом спектре. Это та часть светового спектра, которая приблизительно соответствует длинам волн 380-770 нм и видна невооружённым глазом «усреднённого» наблюдателя. Существует множество фотометрических величин, таких как яркость (1 нит = 1 кд/м2 или 1 стильб = 1 кд/см2), освещённость (1 люкс = 1 лм/м2), и т.д. Все они основаны на двух основных фотометрических стандартах: световой поток и сила света.

Световой поток измеряется в люменах. 1 люмен определяется как световой поток, испускаемый точечным источником с силой света 1 кандела внутри телесного угла 1 стерадиан (1 лм = 1 кд×ср). Важно понимать определение стерадиана, являющегося телесным углом (конусом) с центром в сфере радиуса r, который вырезает из сферы поверхность площадью r2 (см. рис.1). Площадь поверхности сферы равна 4πr2, поэтому полный световой поток, создаваемый точечным источником, с силой света одна кандела, равен 4π люменам.

Рис.1 — телесный угол Ω
телесный уголСила света измеряется в канделах. Научное определение канделы достаточно сложно для образного восприятия: «единица силы света точечного источника в заданном направлении, испускающего монохроматическое излучение частотой 540×1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср». Частота излучения 540×1012 Гц соответствует длине волны 555 нм (излучение зеленого цвета).
Для упрощения понимания можно обратиться к происхождению названия «кандела». Так вот, одна кандела (в переводе с латыни — «свеча») это сила света обычной восковой свечи.
У многих резонно встаёт вопрос: почему сила света измеряется в каких-то канделах, а не в ваттах на стерадиан? Да, можно измерять силу света и в Вт/ср, и специалисты иногда так делают, но при этом возникает одно неудобство. Если бы мы включили синий, зелёный и красный светодиоды с одинаковой силой света в Вт/ср, то зелёный светодиод светил бы ярче. Все дело в том, что человеческий глаз имеет разную чувствительность к различным длинам волн излучения. Но об этом чуть позже. Сейчас же от теории перейдём к практике, то есть к светодиодам.

Еще совсем недавно выпускаемые промышленностью светодиоды выполняли в основном индикаторные функции и их главной потребительской характеристикой была сила света (в милликанделах). Однако такая характеристика оказалась малополезной при построении систем освещения — светодиод с силой света 2000 мкд и углом свечения 30° обеспечивает такой же световой поток, как и светодиод с параметрами 8000 мкд / 15°. Поэтому, из-за увеличивающегося спроса на мощные светодиоды в качестве альтернативы лампам накаливания, сейчас всё чаще делается акцент именно на величину светового потока. То есть именно люмен является более подходящей мерой оценки произведённого света при сравнении между различными источниками света и при выполнении расчётов.

Для оценочного пересчета кандел в люмены, используют следующий метод:
1. Зная плоский угол свечения светодиода θ (двойной угол половинной яркости), указанный производителем, определяем телесный угол: Ω=2π (1 — cos(θ/2)).
2. Вычисляем световой поток: F = Iv × Ω, где Iv — сила света светодиода.

Калькулятор для пересчета кандел в люмены и обратно:
 
Канделы в люмены Люмены в канделы
Угол свечения °
Сила света мкд
лм
Угол свечения °
Световой поток лм
мкд

Однако, фактически измеренное значение может отличаться от расчётной величины из-за вариаций пространственного распределения излучения светодиода. Это особенно заметно при пересчёте несимметричных диаграмм направленности излучения (например, светодиодов с овальной оптикой) и индикатрис узконаправленных светодиодов. Дело в том, что не существует никакого однозначного метода пересчёта силы света для определения точного светового потока. Только непосредственным измерением этой величины можно с высокой точностью получить её значение в люменах.

Фотометрическое измерение светодиодов может оказаться бóльшим искусством, чем просто расчёт с применением строгих физических формул. Существует масса факторов (геометрические и электрические нюансы, различные погрешности, внесённые на этапе производства светодиодов), вариации которых могут существенно влиять на оптические свойства светодиодов. Не существует двух во всём одинаковых светодиодов, поэтому требуется принятие мер, которые значительно увеличат точность ваших измерений. Они включают, но не ограничены следующим:
Учитывайте смещение оптического центра эмиссии светодиодов относительно механического центра.
При фиксации светодиода в креплении испытательной установки предполагается, что свет исходит от его механического центра. Но это не всегда так (см. рис. 2). Оптический центр нередко отклоняется на 5 или более градусов от механического. Возможно, это не является особой проблемой, когда измеряемые приборы имеют широкий угол свечения, например 40 градусов или больше. Но для светодиодов с узким углом свечения результат может различаться на значительную величину. Нужно отметить, что Международная комиссия по освещению (CIE) рекомендует использовать именно механическую (а не оптическую) ось светодиода при проведении измерений.
▪ Измеряйте выход света с определённым временным интервалом.
После того, как на светодиод подано питание, температура перехода увеличивается ввиду потребления электроэнергии (температуру перехода светодиода можно определить как Tj = Ta + (Vf × If) × Rth (j-a)) . Этот процесс может занять несколько секунд или несколько минут до момента наступления теплового равновесия, когда выход света достигнет устойчивого значения. При этом уменьшение выхода света на 5-20% или большую величину — весьма обычное явление. Эта деградация не является необратимой, и первоначальная светоотдача восстановится после обесточивания. На практике в ходе измерения большого количества светодиодов выбор длительного интервала времени между замерами не приемлем. Чаще всего задается интервал порядка 5 секунд, несмотря на то, что выход света не успевает достигать стабильного значения.
▪ Убедитесь, что температура окружающей среды постоянна в ходе тестирования.
Светодиоды меняют яркость и цвет с изменением температуры. Если температура повышается, выход света сокращается, а цвет обычно смещается в длинноволновую сторону спектра.
▪ Всегда используйте стабилизированный источник тока.
Падение напряжения (Vf) на светодиоде может колебаться от прибора к прибору, поэтому если в качестве опорного питания используется источник напряжения, светодиоды не получат одинакового тока.
▪ Используйте легко воспроизводимые условия тестирования.
Сложные условия (специализированная оснастка) могут превосходно подходить для лабораторных измерений. Однако, когда необходимо тестирование значительного количества светодиодов с различным типом корпуса, углом свечения, цветом и т.д., возникает потребность в измерительной системе, которая может быть быстро перенастроена, обеспечивая идентичное выравнивание механических осей и гарантируя, что датчик всегда видит тот же самый сектор эмиссионного конуса.
▪ Убедитесь что всё оборудование надлежащим образом обслужено и откалибровано.

Рис. 2 — девиация угла свечения

девиация угла свечения свечения светодиода












Измеряемые характеристики светодиодов. Часть II.
Категории: сделай сам | Добавил: mnemonik (16.01.2011)
Просмотров: 7648 | Комментарии: 1 | Рейтинг: 0.0/0 |
похожие статьи:


Всего комментариев: 1
avatar
0
1 Саша • 00:11, 06.12.2012 [Материал]
Информация полезная, спасибо. Но цвета сайта ужасные! Совет изменить фон во первых на яркий, лучше белый...
avatar
[сделай сам]

Ключевые слова:


[ Категории каталога ]
сделай сам [55]
Аномальные технологии [1]
полезные устройства [4]
домашние технологии [1]

[ Поиск ]


[ Друзья сайта ]

Мембрана

КосмоБлог


Total online: 1
Guests: 1
Users: 0

Copyright ОСТ © 2025